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Summary. Results of independent mode models of molecular vibrations of S O  2 
and H20 are compared to converged eigenvalues and eigenfunctions. Energies 
of self-consistent-field and adiabatic wave functions are calculated and compared 
to the eigenvalues; Brueckner functions and natural modals are compared to the 
eigenfunctions. These comparisons are made for a class of normal coordinates of 
varying curvature. Of the coordinates we considered, an independent mode model 
based on rectilinear normal coordinates provides the best description of the 
energetics yet provides the poorest description of the eigenfunctions. The ramifica- 
tions of this finding are discussed for both independent mode models and pertur- 
bative descriptions of molecular vibrations. 
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1. Introduction 

A central goal of theoretical chemistry is to understand the connection between 
a Born-Oppenheimer potential energy surface and the dynamics that occurs on 
this surface. An important step in trying to understand this connection is the 
calculation of a rotation-vibration spectrum for the given potential energy surface. 
A large amount of research has been directed towards developing algorithms for 
rapid and accurate calculations of such spectra [1-7]. Implicit in each algorithm is 
a set of coordinates used to describe the vibrational motion. The choice of 
coordinates is crucial, since a judicious selection can significantly reduce the effort 
needed to solve for the vibrational eigenvalues and eigenfunctions. However, the 
coordinates should also provide some physical insight, as this aids in the inter- 
pretation of the results in light of some physical model. A related consideration in 
choosing the coordinates is to select a representation that minimizes the couplings 
amongst all the degrees of freedom. 

In consideration of the above criteria, normal coordinates are a commonly used 
representation for describing molecular motion. In this representation, there are no 
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couplings through quadratic terms in the Hamiltonian. Therefore, low-lying states 
can be accurately written as a single product wave functions, 

t.pn(Q) = I~ ~.,(Q,),  (1) 
i = 1  

where ~,, are harmonic oscillator functions and Qi are the normal coordinates. 
This particular independent particle (or mode) model, has played a profound role 
in both interpretations and calculations of molecular properties. At higher levels of 
excitation, the exact wave function can no longer be expressed in this simple 
product form. Nonetheless, given a more judicious choice of both coordinates 
Q and functions ~,,, a single product form of the wave function can provide 
a surprisingly accurate representation for determining a variety of molecular 
properties. In this paper we will examine several criteria for determining both these 
functions and coordinates. 

Several groups have used the SCF energy as a criterion for optimizing a partic- 
ular class of coordinates. Thompson and Truhlar have considered a rotation of the 
normal coordinates in order to optimize separability via the variational rotation 
angle [8]. Moiseyev showed that even though the variational determination of the 
rotation angles can be difficult, some values of the angle may be restricted based on 
physical arguments [9]. Ba6i6 et al. developed a similar treatment for curvilinear 
motion of HCN. They variationally found the optimal coordinates among a class 
of spheroidal coordinates for describing isomerization motion [10]. Zflfiiga et al. 
[11] considered a class of Jacobi coordinates using SCF energies to find the 
optimal member of that class for HCN. Gibson et al. used hyperspherical coordi- 
nates in a semiclassical SCF framework, and found them to be particularly effective 
for describing the highly excited vibrational states of H20 and CO2 [12]. Roth et 
al. applied the SCF method to compare normal modes and local modes [13]. They 
found that the local modes gave a better description of the energy for H20 and 
CO2 than do the normal modes. 

Another criterion for judging the quality of independent particle models is the 
best density criterion. Here, natural modals have been used to analyze vibra- 
tion-rotation wave functions of van der Waals systems [-14], to study mode 
specificity in the localization of energy [15], to examine strongly coupled Morse 
oscillators [16], to classify vibrational states as ergodic [17], and to analyze 
separability of vibrational wave functions as a function of the curvature of the 
coordinate system [18]. In related work, Fleming and Hutchinson, have examined 
a class of coordinates defined as linear combinations of bond modes. The optimal 
coordinate rotation was defined as that which maximizes the projection of the 
exact wave function onto a particular zero-order state [19]. 

The above work has demonstrated that coordinate choice is an important 
component of independent mode models. In this paper we follow this lead and 
examine a class of normal coordinates introduced by Colbert and Sibert [18]. 
These coordinates are called the variable curvature coordinates (VCC), because the 
coordinate system is parametrized by a curvature variable which allows one to 
continuously vary the curvature of the coordinate system. Furthermore, we will 
apply the above-mentioned criteria for judging the quality of the independent 
mode model to show that different criteria lead to very different sets of optimal 
coordinates. 

To illustrate these ideas, wave functions and energies for two nonlinear sym- 
metric triatomics, SO2 and H 2 0  are calculated using the VCC, in order to 
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determine the coordinate system that optimizes the independent mode model. If 
either the SCF energy or the adiabatic energy are used as a criterion to optimize the 
coordinates, we find that rectilinear normal coordinates give the best representa- 
tion for the product function. However, when either the best density or best overlap 
criterion is used, we find that rectilinear normal coordinates give the poorest 
description. The optimal coordinates, determined via this criterion, have a curva- 
ture that is greater than that of the bond-angle representation. 

In addition to the above independent particle models, we consider results of 
Van Vleck perturbation theory. McCoy and Sibert have examined the convergence 
of perturbation expansions of the energy and compared the results for vibrational 
Hamiltonians expressed as functions of curvilinear and rectilinear normal coordi- 
nates [25]. In this paper we discuss how perturbative results vary as a function of 
coordinate curvature. 

The outline of this paper is as follows. In Sect. 2, we review the definition of the 
VCC and the techniques we use to variationaUy determine the molecular eigen- 
functions in the VCC representation. We describe the criteria for judging the 
independent mode model and present the results of these criteria as a function of 
coordinate curvature in Sect. 3. The sensitivity of perturbative expansions to the 
coordinate curvature are presented and discussed in Sect. 4. The results of this 
study are summarized in Sect. 5. 

2. The variable curvature coordinates 

Colbert and Sibert have defined the VCC for several model problems as well as for 
nonlinear triatomic molecules [18]. For ABA triatomic molecules, the coordinates 
are parametrized by a single variable I which controls the curvature associated with 
the extension of the bend coordinate for fixed values of the two stretch coordinates. 
One well-known limit of this class of coordinates is the internal bond-angle 
extension coordinates (l = 0). The member for l = ov is the rectilinear internal 
coordinates used by Wilson et al. [26]. These coordinates, which are linear 
combinations of the Cartesian coordinates, are identical to the bond-angle exten- 
sion coordinates in the limit of small amplitude motion. The molecules in Fig. 1 
correspond to extension of the bend, with fixed stretch extensions. The top figure 
corresponds to a coordinate system where the bend motion is characterized by 
a curvature greater (l < 0) than that of the bond-angle coordinates. Optimizing 
coordinates by varying the curvature has also been recently studied by Bastida 
et al. [27], who considered a class of hyperspherical coordinates to investigate 
nonbending models of H20 and CO2. 

Previous work has shown that the separability of the wave function is sensitive 
to the choice of the linear combination of internal coordinates [28] and that the 
transformation that leads to the normal coordinates often gives the lowest SCF 
vibrational energies. Therefore, we use the linear combination of VCC that give rise 
to normal coordinates. We label the normal coordinates according to the standard 
spectroscopic convention where Q1 and Q3 are the symmetric and asymmetric 
stretch coordinates, respectively, and Qz is the bend coordinate. The normal mode 
VCC are linearly related to the VCC internal coordinates via the linear trans- 
formation 

Q = L - 1 S. (2) 
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Fig. 1. Vibrational motion of the nuclei for different values of the curvature. 
The top plot corresponds to (l < 0), the middle plot is the bond-angle limit 
(l = 0) and the bottom plot is the rectilinear limit of the VCC(I ~ co ). In the 
limit of small amplitude motion, all these motions are identical 

Here L is the standard matrix used by Wilson et al. [26]; this matrix is not 
a function of the curvature. Since the VCC internal coordinates are identical to 
bond-angle coordinates in the limit of small amplitude motion, the quadratic 
contributions to the Hamiltonian are invariant to the curvature of the coordinate 
system. 

We now turn to discussion of the methods we have implemented to obtain the 
vibrational eigenfunctions and eigenvalues. Our approach is general, since it 
requires finding the eigenvalues and eigenfunctions of a class of coordinates and 
therefore a class of Hamiltonians. 

The most general form of the J = 0 vibrational Hamiltonian for a nonlinear 
polyatomic molecule is 

= 1 ~  piGij(Q)~j -k- V'(Q) + V(Q), 
2 ~j 

(3) 

where G~j are the G matrix elements given by Wilson et al. [26]. V'(Q) is typically 
small and arises from the transformation of the kinetic energy operator from 
Cartesian coordinates to curvilinear internal coordinates. The volume element for 
the Hamiltonian in Eq. (3) is dQ = dQ1 dQ2 dQa. The form for the above Hamil- 
tonian operator is general; it therefore applies for the VCC. The G matrix elements 
can be written as functions of the atomic masses and the B matrix as [26] 

Gi.i = ~ Bik m~ 1 Bjk, (4) 
k 

where the elements of the matrix B are defined 

0Q~ 0sl 
B,k = C3Xk = ~ L~71 (5) l ~Xk ' 

Here Q~ are the normal mode VCC, Sl are the internal VCC, and Xk are the 
Cartesian displacement coordinates. In our work the derivatives in this equation 
are calculated analytically [18]. The form of V'(Q) is more complicated, so we 
expanded this term numerically in a Taylor series to fourth order around the 
equilibrium position in terms of the VCC. 

The potential energy surface we used for SOz is expressed as a function of the 
bond-angle internal coordinates [29]. The force field we used for HzO was 
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constructed by Halonen and Carrington [30]. Their potential is expressed as 
a quartic expansion in terms of the bend extensions and Morse variables 
Yi = D~[1 - e x p (  - e r i ) ]  where ri is a bond extension coordinate. Following the 
ideas of Carter and Handy, we modified the H20 surface slightly so the barrier to 
linear configuration has the correct boundary conditions, i.e. c~V/c~OIo=~ = 0 [31]. 

An important consideration in our choice of basis set is that it be flexible 
enough to describe the continuous changes in the coordinate system. We have 
found that a distributed Gaussian basis (DGB) set provides this flexibility. This 
basis has been used to calculate effectively vibrational energies and wave functions 
[6, 32, 33]. The form for these basis functions is 

1/'  _ )(,,,,(Q~) = - -  exp[ A (~? (Qi - Qi,)2]. (6) 

In Eq. (6), Qi, define the center of the Gaussian Z,, for the ith degree of freedom. The 
centers are equally spaced over the potential surface along each degree of freedom. 
For each degree of freedom, the Gaussians have a constant width A (Q,) = A~. The 
three values for these widths are optimized by minimizing the vibrational energies 
for two two-dimensional Hamiltonians. First A1 and Az are determined by setting 
Qa = 0 and minimizing the two-dimensional symmetric stretch-bend energies 
as a function of A1 nd A2. Then A 3 is determined by setting QI = 0 and minimizing 
the asymmetric stretch-bend energies with respect to A3. These minimizations 
of A~, carried out once for l = 0, are not repeated for other values of the 
curvature. 

To calculate the kinetic and potential energy matrix elements, an evenly spaced 
three-dimensional grid of points for the normal mode VCC is selected. These 
matrix elements are calculated by Gauss-Hermite quadrature using 4 points in 
each degree of freedom. Both the Hamiltonian and overlap matrices are construc- 
ted using symmetrized wave functions which reflect the C2v symmetry of nonlinear 
symmetric triatomics. The generalized eigenvalue equation, H - E S  = 0, is solved. 
For HzO, 8 Gaussians were placed along each stretch, and 12 Gaussians were 
placed along the bend to give a total of 768 functions. After symmetrization, the 
symmetric matrix contained 432 functions and antisymmetric matrix contained 
336 functions. Variationally converged energies for SOz and HzO (to within 
0.2 cm- 1) are presented in Tables 1 and 2, respectively. 

As a word of caution, we note that using normal coordinates and the associated 
volume elements leads to a Hamiltonian with singularities in V' at the linear 
configuration of the molecule. For this reason, the Gaussian basis sets are not 
useful for describing the highly excited bend states of HzO. This shortcoming holds 
true for all normal mode Hamiltonians. 

3. Independent mode models 

In this section the vibrational energies and wave functions ~,, of S O  2 and H20 are 
analyzed using the criteria suggested by Kutzelnigg and Smith [20]. In contrast to 
our work, their study characterized independent particle models for electronic 
structure wave functions. In the following paragraphs we review these standards 
along with an adiabatic calculation of the vibrational energies. We then determine 
optimal coordinates for a single product expansion of the vibrational wave func- 
tion for each of the criteria. 
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Table 1. Vibrational energies for SO2 in units of cm- t where l = 0 ~t 

State Variational SCF a Density modaP Adiabatic ~ 

0, 0, .0 1526.6 1.6 1.6 0.0 
0, 1, 0 2042.0 2.0 2.0 0.2 
0, 2, 0 2553.0 3.5 3.6 1.6 
1, 0, 0 2677.9 6.2 6.4 -- 0.9 
0, 0, 1 2889.0 4.7 4.7 0.0 
0, 3, 0 3059.9 5.9 5.9 3.9 
1, 1, 0 3193.9 5.4 5.7 -- 2.4 
0, 1, 1 3403.8 5.2 5.3 0.3 
0, 4, 0 3562.6 9.0 9.1 7.1 
1, 2, 0 3705.2 6.2 6.4 - 2.3 
1, 3, 0 4212.0 8.1 8.2 - 1.0 
2, 2, 0 4850.2 8.9 9.8 - 6.3 
1, 2, 1 5052.4 20.0 20.8 - 2.3 
2, 0, 1 5156.0 35.2 37.6 - 1.9 
0, 2, 2 5264.6 7.9 7.9 2.3 
2, 3, 0 5356.9 10.4 11.5 - 6.0 
1, 0, 2 5364.0 30.7 32.2 - 0.2 
3, 1, 0 5476.8 12.0 13.8 -- 7.9 
1, 3, 1 5558.5 2Z2 23.1 - 0.8 
0, 0, 3 5581.8 3.4 3.4 4.1 
2, 1, 1 5672.2 33.0 35.7 - 5.3 
0, 3, 2 5770.2 10.7 10.8 4.9 
1, 1, 2 5879.0 29.9 31.4 -- 1.8 
3, 2, 0 5988.3 11.5 13.7 - 10.3 
4, 0, 0 6095.3 16.4 19.1 - 6.8 
2, 2, 1 6183.0 33.4 36.1 - 6.4 

a Difference between approximate single configuration energies and exact energies. States 
with 5 or more quanta of excitation in the bend are not displayed, and only select states 
between 3800-5000 cm - 1 are displayed 

2.1. Wave function analysis 

B r u e c k n e r  o rb i t a l s  [34]  a re  de f ined  to  m a x i m i z e  the  p r o j e c t i o n  of  a s ingle conf ig-  
u r a t i o n  p r o d u c t  basis  o n t o  the  exac t  e igenfunc t ion ,  a n d  na tu r a l  m o d a l s  a re  de f ined  
to  d i a g o n a l i z e  the  f i r s t -o rde r  dens i ty  mat r ix .  T h e  n a t u r a l  o rb i t a l  e x p a n s i o n  was  
d e v e l o p e d  to  e x a m i n e  e l ec t ron i c  w a v e  func t ions  and  to  r educe  the  n u m b e r  o f  
c o n f i g u r a t i o n s  in t he  e x p a n s i o n  of  the  w a v e  func t ion  [35].  T h e  n a t u r a l  m o d a l s  
h a v e  a lso  b e e n  used  to  e x a m i n e  v i b r a t i o n a l  w a v e  funct ions ,  since very  few conf ig-  
u r a t i ons  o f  the  n a t u r a l  m o d a l s  a re  n e e d e d  to descr ibe  the  exac t  w a v e  func t ion  [36].  

F o r  SO2 the  w a v e  f u n c t i o n s  are  e x p a n d e d  as 

~ z,~n F ~( Q1) GIn(Q2) Hn( Qa), (7) 
l~tn~n 

w h e r e  F , ,  Gm a n d  Hn a re  the  n a t u r a l  moda l s .  F o r  H 2 0 ,  the  w a v e  func t ions  a re  
e x p a n d e d  in t e rms  of  n a t u r a l  m o d a l s  and  gemina ls ,  

t//r(Q1, Q2, Qa) = ~ ¢(r) f :r~ ~m ~t~l ,  Q3)6~(Q2), (8) 
n m  
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State a Variational SCF b Density modal b Adiabatic ~ 

(0, 0) 0 4627.5 1.3 1.3 0.5 
(0, 0) 1 6222.2 4.2 4.2 2.8 
(0, 0) 2 7779.6 7.8 8.0 9.3 
(1, 0) + 0 8284.5 2.3 2.4 - 1.2 
(1, 0)- 0 8382.3 2.0 2.1 0.8 
(0, 0) 3 9297.4 12.2 12.3 19.2 
(1,0) ÷ 1 9860.1 9.0 9.2 - 1.9 
(1, 0)- 1 9956.6 6.8 6.8 3.4 
(0, 0) 4 10771.8 16.2 16.2 31.4 
(1, 1) 2 15141.8 19.6 19.6 9.8 
(3, 0) ÷ 0 15249.8 2.3 2.7 - 6.1 
(3, 0)- 0 15266.2 2.5 2.6 - 5.7 
(2, 1) + 0 15503.7 3.4 3.4 - 0.8 
(2, 1)- 0 15659.8 4.1 4.1 1.3 
(2, 0) + 3 16379.6 40.2 40.3 8.3 
(2, 0)- 3 16428.2 34,0 34.6 16.1 
(1, 1) 3 16618.5 28,7 28.7 19.9 
(3, 0) + 1 16782.9 16,7 17.2 - 2.6 
(3, 0)- 1 16798.6 16.1 16.5 - 0.1 
(2, 1) ÷ 1 17038.7 17.8 18.2 - 0.7 
(2, 1)- 1 17193.7 15.4 15.6 4.6 
(2, 1) ÷ 2 18543.8 23.9 24.1 - 5.4 
(2, 1)- 2 18688.8 27.0 27.2 11.7 

a The states are labeled using local mode notation 
b Differences between approximatie energies and exact energies. 

where the m o d a l  descr ibes  the bend degree of  f reedom and the geminal  describes 
bo th  s t re tch degrees  of  f reedom. There  is a s t rong 2 :2  D a r l i n g - D e n n i s o n  reson-  
ance be tween the two stretch modes .  Consequen t ly  these two modes  canno t  be 
expressed using s imple  p roduc t  functions.  Fu r the rmore ,  the mixing between the 
s tretch modes  in H 2 0  is insensit ive to the curva ture  of the bending  coordina te .  

The  full va r i a t i ona l  ca lcu la t ion  is carr ied  out  at  several  values of  the curvature ,  
and  the na tu r a l  m o d a l s  are  then cons t ruc ted  for each state using s t anda rd  methods .  
F o r  H 2 0  we used the C a r l s o n - K e l l e r  theorem [37] to simplify the expans ion  of  
Eq. (8) to 

kUr(Q1, Q2, Q3) = ~ C(~ r) F~(QI, Q3)Gn(Q2). 
n 

(9) 

Here  there  are  no  cross  te rms in the expans ion  of  the wave function,  and  the 
expans ion  coefficients a re  re la ted  to the eigenvalues A ,  of the one -moda l  densi ty  
mat r ix  by  the re la t ion  C'(, r) --- A~/2. 

L6wdin  and  Shull  have shown that  na tu ra l  orbi ta ls  and  Brueckner  orbi ta ls  are  
equiva lent  if on ly  two orb i ta l s  F ,  and  G, are  used to describe the coord ina tes  of  
interest  [38].  F o r  SO2 we i terat ively  remove  all singly excited expans ion  coeffi- 
cients in Eq. (7) in o rde r  to find the Brueckner  modals ,  i.e. best  over lap  wave 
function.  To  i l lus t ra te  this i tera t ive  process  we show a simple two-d imens iona l  
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example of a wave function expanded in an orthonormal basis set 

~Vr(Q1,Q2) = cliFl(Q1)Gi(Q2) + ci2F2(Q1)GI(Q2) + c22F2(Q1)G2(Q2), (10) 

where cll  is greater than the other two expansion coefficients. In order to find the 
Brueckner function we iteratively remove all the singly excited expansion coeffi- 
cients, there being just the one cl2 term in the present example, via the orthogonal 
transformation 

F~ = [ c l lF  i + ci2F2]/(c21 Jr C22) 1/2, 
r~  = [cl lF2 -- clzF1]/(c21 + c22) 1/2. (11) 

to obtain 

Tr(Q1, Q2) = dll F'l (Q1)Gl (Q2) + di2 F'2(Qi)GI (Q2) + d22 F'2(Q1)G2(Q2). 
(12) 

In this new representation the singly excited expansion coefficient is reduced in 
magnitude to be 

diE = ci2c22/(c21 + c22) 1/2. (13) 

The natural orbitals were used as the first step in this process. Since a single 
configuration typically dominates the expansion, the iteration proceeds rapidly. 
Indeed, the Brueckner functions and the natural orbitals were found to be very 
similar for the systems we investigated, so in this paper we mainly present results 
for the Brueckner functions. 

2.2. Self-consistent-field calculation 

The SCF approach provides an alternative method for determining optimal prod- 
uct functions. For  a thorough review of the research on applying the SCF method 
to calculating vibrational energies and wave functions see the papers by Gerber 
et al. [39] and Ratner et al. [28]. 

In contrast to the Brueckner orbitals, where the overlap of the product basis 
with respect to the exact wave function is maximized, the SCF modals are chosen 
such that the following functional is satisfied: 

6 (T,[ / t [  T,> = 0. (14) 

The functional is constructed by inserting a product wave function into Eq. (14); 
this leads directly to the standard set of integro-differential equations for the SCF 
modals. The modals can be determined iteratively using either propagation 
methods such as the Cooley-Numerov method [40] or they can be determined 
by expanding the modals in a basis and using matrix algebra to solve the differen- 
tial equations [41]. We use the later method. The modals are expanded in the 
DGB's, and unitary transformations are applied to small subsets of the Hamil- 
tonian until self-consistency is achieved for the energy. 

The SCF wave functions have the same form as for the natural modal expan- 
sion. For SOz we expand in modals, and for HzO we expand in terms of modals 
and geminals. 
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2.3. Adiabatic calculation 

The adiabatic approximation takes advantage of a dynamic separability 
[22, 23, 42, 43]. The assumption here is that there is some widely separated time 
scale for the motion of the nuclei. This is a good approximation, since the stretch 
frequency is at least a factor of two larger than the bend frequency in both H20 and 
SO2. Despite the frequency disparity, the approximation will breakdown for H20 
at high energies where there are 5-6 quanta of OH stretch excitation and the 2:1 
stretch-bend Fermi resonance effects become pronounced. 

We follow a similar approach of constructing the adiabatic wave functions as 
Johnson and Reinhardt [22]. The key difference is that these workers used Radau 
coordinates. The vibrational adiabatic wave function is written as 

a d  
7~,,,(Qx, Q2, Q3) = z,"(Qb Q3; Q2)q~,"(Q2), (15) 

where the stretch function 7,,. is parametrized by the bend coordinate. The stretch 
functions are eigenfunctions of 

fits(Q2) = ½ PI Glx P1 + ½ PIGx3P3 + ½P3G31Pl 

+ ½P3G33 P3 + V'(Q) + V(Q), (16) 

where/~s(Q2) is a portion of the full Hamiltonian in Eq. (3). The corresponding 
eigenvalues E,"(Q2), are obtained variationaUy using a DGB basis set. The bend 
functions are eigenfunctions of 

fflb = ½-f'2G,"(Q2)P2 + E,,,(Q2) + Eclat(Q2), (17) 

where Eaac contains the diagonal adiabatic corrections. These functions also were 
obtained variationally using a DGB basis. 

2.4. Discussion 

In this section we apply the above-discussed criteria to investigate the optimal 
coordinates as a function of the curvature of the coordinate system. Before doing 
so, however, we discuss a simple, visual criterion for gauging the optimal coordi- 
nates of vibrational wave functions as a function of coordinate curvature. 

In Fig. 2 we have displayed an eigenfunction of SO2 in three coordinate sys- 
tems. If these wave functions could be expressed in the single-product form 
~P,(Q) = I-I. 1 ~, (Qi), then the nodal pattern would look like a "checkerboard"; 
the nodal hnes would intersect each other at right angles and exhibit no curvature. 
The nodal lines of the wave function in Fig. 2a have considerable curvature. This 
curvature is readily reduced in the VCC by decreasing the value of l, and thereby 
increasing the curvature of the coordinate system (cf. Fig. 2b, c). 

We analyze separability as a function of curvature in a more quantitative 
manner by plotting the leading expansion coefficient of the Brueckner orbitals 
against the curvature of the coordinate system. The results for several wave 
functions are shown for SO2 in Fig. 3. The magnitudes of the leading expansion 
coefficients are all monotonically decreasing functions that show maxima for I < 0. 
This behavior is similar to that found by Colbert and Sibert in an earlier study of 
two-dimensional model problems [18]. We also observe the same trends for H20. 



116 R.C. Mayrhofer, E. L. Sibert 

1,0 

cY 
,0 t 

:..~ - . . ;  . . .  

02 

1.0 

o! .0 W 
;?.~' . ;  - .j:~ . . . .  

cY m 
Fig. 2. Q3 = 0 slices through the SO2 vibrational wave function (1, 3,0) for various values of the 
curvature. The values of I for the figures from top to bot tom are 3.18, 0.0 and - 0.79 ~.. Notice as the 
curvature of the coordinates increases, the curvature in the nodal pattern of the wave function decreases 

J 

.NI l  

.960 

• " .'-2...._... 
' . ~  . . . .  ,:o . . . .  2 : o  3:0 

KA) 

Fig. 3. The largest Brueckner expansion coefficient for 
SO2 is plotted against l (cf. Fig. 2). The dashed curves are 
labeled from top to bot tom as (0,2,0), (1,2,0), (1,3,0), 
(2, 2, 0) and (1, 2, 1). The solid curve is the average of the 
largest Brueckner coefficients for the 14 highest energy 
functions of Table 1 

Although the Cmax(1) will certainly reach a maximum and then decrease as l is 
further decreased, we were unable to increase the curvature beyond the values 
given in the figure, as a result of numerical difficulties with the transformation from 
the VCC to the bond-angle coordinates. 

Although the functional dependence of Cm,x(1) varies from state to state, for 
example, the ground state expansion coefficient (cf. the uppermost curve) is an 
insensitive function of the curvature, as the total energy of the system is increased, 
anharmonic terms play an increased role, and the maximum expansion coefficients 
become more sensitive functions of the coordinate curvature. The important trend 
to note in this plot is that the wave functions can be represented best by a single- 
product configuration in the regime of small I over a large range of energies. These 
simple trends are expected to break down at higher energies where resonance 
interactions lead to substantially more complicated wave functions. At these higher 
energies, simply changing the curvature is not expected to significantly improve the 
separability of the Wave functions. In fact, we have shown [18] in the case of CO:  
that, when there is a strong 2:1 stretch-bend Fermi resonance, Cm~x(1) is an 
extremely insensitive function of the curvature of the coordinate system. 

The SCF energy is plotted in Fig. 4 as a function of I. Based upon the previous 
results, one would expect the correlation energy to decrease as l is decreased. 
However, our plots show the opposite trend for the SCF calculation for most of the 
vibrational states below 6000 cm- t. Thus, according to this criterion, the rectilin- 
ear limit provides the best independent particle model. Figures 3 and 4 constitute 
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Fig. 4. The correlation energy for SO2 is plotted against I. 
With the left side of the graph being the reference point, the 
dashed curves from top to bottom are labeled (1,2,1), 
(2,2,0), (1,3,0), (1,2,0) and (0,2,0). The solid curve is the 
average of the correlation energies for the 14 highest energy 
functions of Table 1 

the two major points of this paper. First, the curvature parameter of the VCC 
provides a simple way of improving on the independent mode models. But, second, 
the optimal choice of l, i.e. the choice of coordinates is a very strong function of 
choice of criteria for evalutating the single-mode model. 

The above result is unexpected. To check it, we calculated the energy of the 
natural modal associated with the largest coefficient and found that the natural 
modal energy was indeed larger than the SCF energy for every state. This result 
must hold, since the SCF orbitals are defined to give the best energy for a single- 
product basis. We also used the SCF functions in a full configuration-interaction 
(CI) calculation. The invariance of the resulting eigenvalues with respect to changes 
in the coordinate curvature provided us with an accurate check of our SCF results. 

Certain and Moiseyev compared the adiabatic method with the SCF method to 
calculate highly excited vibrational states of two strongly coupled modes [43]. 
They found that the adiabatic calculation described the strongly coupled modes 
better than the SCF calculation. Both methods are similar in that there is some 
separability in the modes but there is a distinction in the way they assume the 
separability. The nodal patterns of an adiabatic wave function need not have the 
same "checkerboard" pattern found for the SCF wave functions. We have therefore 
included in our investigation a plot of the differences between adiabatic energies 
and exact energies of SO2 against the curvature in Fig. 5. We find the same trends 
as were reported above for the SCF calculation. However, in contrast to the SCF 
results, the adiabatic energies often fall below the variational energies. 

4. Perturbation theory 

In the proceeding sections, our study focused on quantifying the accuracy of 
independent mode models as a function of coordinate curvature. Part of the 
importance of this study stems from the fact that, as chemists, we often use 
independent mode models as a way to gain insight into complicated molecular 
systems where no exact analytical solutions are available. Normal modes play just 
such a role in the interpretation of spectra associated with low levels of vibrational 
excitation. We have shown above, however that one can construct an entire class of 
normal coordinates of varying curvature. Furthermore, the extent of mixing 
between normal modes, depends both on the particular choice of normal modes 
and on the criterion used to measure the breakdown of the independent mode 
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Fig. 5. The difference between the adiabatic energy and 
the variationally exact energy for SO2 is plotted against I. 
The curves are labeled from top to bottom as (0,2,0), 
(1,3,0), (1,2,0), (1,2,1) and (2,2,0) 

model. In this section, we discuss, some of the ramifications of the multiple normal 
mode descriptions as they apply to perturbation theory. 

Except for recent work based on local mode perspectives [44-46], the 
preponderance of perturbative analyses have been developed as extensions to the recti- 
linear normal mode picture [47-49]. Recently, McCoy and Sibert compared 
rectilinear and curvilinear normal mode descriptions of three linear molecules, 
CO2, HCN, and HCCH [25]. Here the curvilinear normal coordinates are defined 
as those which are obtained by taking the appropriate linear combination of the 
bond-angle coordinates, such that the Hamiltonian is separable through quadratic 
terms. These workers found for CO2 that the perturbative expansion of the energy 
levels converged faster for the curvilinear representation. In contrast, for HCN the 
perturbative expansions are equivalent in these two representations. 

In the absence of significant resonance interactions, the Hamiltonian derived 
from second-order perturbation theory is 

;t  = E o~,(,~, + ½) + Z z,j(,~, + ½) (,b + ½), (18) 
i i > ~ j  

where ~ -= a~ a~ is the number operator for the ith normal mode. The zeroth-order 
contribution t o /~  consists of three uncoupled harmonic oscillators; the second- 
order terms are anharmonic correction terms. As originally developed, this expres- 
sion was obtained from perturbative analysis based on rectilinear normal coordi- 
nates, and the above anharmonic correction terms are known functions of the 
parameters used to describe the potential energy surface. In fact, however, the 
numerical values of the anharmonic correction terms are invariant to the curvature 
of the normal coordinates [25]. 

In the more general case, where there are some important couplings between 
the molecular vibrations, a more complicated expression is needed to describe the 
energy levels. For example, Benedict et al. [50] showed that perturbation theory 
could be used to transform the full vibrational Hamiltonian to the block-diagonal 
form 

k122 (,~*~ a2a2 + ,*la'Y~) + ~ (alala3a3 + al,ha~a*~). +S--r~ 1 4  
(19) 
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Table 3. Spectroscopic constants  for SO2 at various curvature values 

Term Rectilinear Internal Hypercurvature" 

ml 1164,70 1164.70 1164.70 
m2 519.52 519.52 519.52 
~a 1380.37 1380.37 1380.37 
Zll - -3.364 --3.364 --3.414 
~22 -- 1.226 - 1.160 - 1.670 
Zaa --5.437 - 5 . 4 3 7  --5.245 
~t2 --2.648 - 1 . 1 1 4  - 0 . 7 4 3  
X~3 - 1 3 . 8 0  - 1 3 . 8 0  - 1 3 . 7 7  
X23 - 0 . 5 2 5  - 0 . 5 2 5  - 0 . 5 7 4  
Ik1221 30.59 23.48 22.92 
k1133 --16.94 - 1 6 . 8 0  --16.74 

at= - 0.25 ~, 

This Hamiltonian, expressed as a function of number operators and off-diagonal 
creation and annihilation operators, is the same as that Eq. (18) with the exception 
of two terms that couple specific sets of states. The off-diagonal coupling term, 
proportional to k122, allows for the 2:1 Fermi resonance interaction between the 
symmetric stretch and bend. The term proportional to k113a, allows for the 2:2 
Darling-Dennison resonance coupling between the symmetric and asymmetric 
stretches. Due to off-diagonal coupling terms the numerical values of the coeffi- 
cients in this Hamiltonian are dependent on the choice of the coordinate curvature 
[25]. This functional dependence is shown in Tables 3 and 4. Interestingly, the 
stretch-bend coupling term is sensitive to the coordinate curvature; the magnitude 
of this term decreases as the coordinate curvature increases. Sibert and Colbert 
[18] found that minimizing this term as a function of the coordinate curvature was 
a useful way to predict which curvature leads to the most separable wave functions 
as based on the natural modal analysis. Here the central idea is that upon 
expanding the Hamiltonian one finds that there are both potential and kinetic 
contributions to ktz2. The relative sizes of these contributions are a function of the 
coordinate curvature. In the rectilinear limit, the kinetic contribution is zero and 
the potential contribution for both SO2 and H20 is a maximum. As the curvature 
increases, the kinetic contribution to k~zz increases and the potential contribution 
decreases. For both HzO and SO2 when l ~< 0/~ the two contributions lead to the 
smallest value ofk~2z. Since, in the perturbative treatment only the kxzz terms leads 
to configuration interaction, this result is entirely consistent with the results of the 
maximum overlap criterion. 

Using a Hamiltonian of this form, Baggott [51] fit the energy levels of HzO and 
D20. An important goal of such fits is to provide insight into the nature of the 
underlying Born-Oppenheimer potential energy surface. The above constants, in 
conjunction with rotation-vibration interaction terms, provide, at least in prin- 
ciple, a quartic normal coordinate force field [47]. However, having obtained the 
coefficients from a fit to an experimental spectrum, one cannot know a priori 
which value of the curvature to use when inverting the spectrum. For example, 
the kazz coupling term is a measure of the stretch-bend coupling. If one compares 
the results of Baggott's [51] spectroscopic determination of k~22 (ef. Table 4) to 
the value of this coefficient obtained from the perturbative expansion based on 
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T a b l e  4. S p e c t r o s c o p i c  c o n s t a n t s  for  H 2 0  at  v a r i o u s  c u r v a t u r e  v a l u e s  

T e r m  R e c t i l i n e a r  I n t e r n a l  H y p e r c u r v a t u r e  a Ref. [51]  

col 3825.85 3825.85 3825.85 3829.02 

co2 1650.66 1650.66 1650.66 1651.72 

o93 3936.38 3936.38 3936.38 3942.04 

Z l l  - 40.47 - 40.47 - 40.47 - 41.47 

2(22 - 13.60 - 17.13 - 17.86 - 18.91 

Za3 --  46.44 - 46.44 - 46.44 --  47.51 

)h2 - 33.43 - 19.32 - 16.40 - 19.20 

)~13 - 156.85 - 156.85 - 156.85 - 162.16 

X23 - 19.61 - 19.61 - 19.61 - 19.04 

1k1221 133.98 56.06 9.07 37.57 

k1133 - 155.88 - 155.88 - 155.91 - 153.63 

a l =  -- 0 . 3 5 / ~  

rectilinear coordinates, one might argue that the force field of Halonen and 
Carrington [30] dramatically overestimates the amount of stretch-bend coupling. 
The results of Table 4 provide a clear demonstration of the dangers of such 
reasoning. 

5. Concluding remarks 

We have investigated the accuracy of independent mode descriptions for molecular 
vibrations as a function of a class of coordinates. In particular, we have quantified, 
for vibrational states of SO2 and H20, the accuracy of independent mode models 
for determining: (1) eigenvalues using SCF and adiabatic energies and (2) eigen- 
functions using natural modals and Brueckner functions. We have included in this 
study all those vibrational states whose excitation energies are less than 6100 cm- 1 
and less than 18 600 cm-1 for SO2 and H20, respectively. The coordinates, the 
VCC, are a set of normal mode coordinates for which the curvature of the 
coordinate system is determined by a single parameter. 

We found that the Brueckner functions and natural modals were nearly 
equivalent. For Brueckner functions, we showed that the curvature of the coordi- 
nate system that gives the maximum overlap with the exact eigenfunctions is 
greater than that of the curvilinear normal coordinates. In contrast, according to 
the best energy criterion, i.e. the least SCF energy, the rectilinear normal modes 
give the best description for the independent mode model. These results are 
surprising to the extent that, if the wave functions were indeed separable for some 
value of the coordinate curvature, then as one approached this value of the 
curvature, the SCF energy would approach the exact energy, and the overlap of 
the exact eigenfunction with the Brueckner function would approach unity. The 
adiabatic energies, which exploit a different dynamic separability, follow the similar 
trends as were observed for the SCF results. This work clearly elucidates the 
importance of examining several criteria simultaneously when looking for optimal 
sets of coordinates. 

The coefficients of the spectroscopic Hamiltonian were investigated as a func- 
tion of the curvature of the coordinate system. If the spectroscopic Hamiltonian 
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contains no off-diagonal coupling terms, then the eigenfunctions have the same 
form as an independent mode model. In contrast to the above independent mode 
results, the coefficients of the spectroscopic Hamiltonian are not a function of the 
coordinate curvature. On the other hand, if there are off-diagonal coupling terms, 
then the expansion coefficients are a function of the curvature. Using this result we 
highlighted the subtleties involved in extracting from a second order perturbative 
expansion the coefficients of a potential energy expansion. 
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